

Building a Tetris Game in C

By Chad Jordan

July 18th, 2008

Table of Contents
Introduction ... 1

A Brief Story of Tetris .. 1

Formulating a Plan .. 2

Understand the Problem .. 2

Break Down the Components .. 2

 Design an Algorithm ... 2

 Plan the Program Structure ... 3

 Iterate and Test .. 4

 Finalize the Program ... 4

C Programming for Game Development…………………………………………… …………….….4

Why Procedural Programming? ... 4

Setting Up the Project ... 5

Preparing the C Project ... 5

Implementing the Code ... 6

Declaring Libraries & Defining Directives ... 6

Declaring & Storing Data Types .. 7

Clearing the Screen & Spawning Pieces ... 9

Drawing the Next Piece & the Player Board .. 10

Updating Score Logic .. 12

Remove Full Lines Logic .. 13

Implementing Collision Detection .. 14

Collision with Rotation ... 15

Keyboard Input & Resetting the Game .. 16

Game Over & Finalizing .. 17

Compiling & Done ... 18

Conclusion ... 19

 1

In this guide, you will learn:
1) Algorithm design and decision making in order to formulate a Tetris game
2) A complete procedural programming approach using the C language for game

development

Ever since its inception in 1984, Tetris has remained one of the most sought-after video games
of all time selling more than 100 million copies world-wide. Alexey Pajitnov from Moscow,
Russia was the original creator and programmer of Tetris who wrote the game in Pascal. This
would later be sold to Nintendo for licensing rights and make him millions of dollars in sales.
The success of Tetris would later pave the way for numerous other manifestations of the game
across multiple consoles. The original NES and Game Boy release of the game would not
happen until 1989.

My love of Tetris began in the Christmas of 1990 when I got it for Nintendo and Game Boy. The
game was deeply addictive and all of my family members enjoyed it on these platforms. I never
could understand how any of it worked behind the screen, I just knew I loved the game.

Even after all these years,
I’ve still never been able
to part with the game and
I still enjoy playing them
from time to time. After
a number of years later, I
had become determined
to understand how games
were made, and in 2001 I
tried to start learning C
programming. I only got
so far on my own, but
when I finally made it to
college, I declared a major

in computer science new media. It would still be a couple more years of hard work before I
could build my first version of the block-dropping masterpiece, but on July 4th of 2008, I had
made a successful version of the game with all of the base-level features. At the time, I was not
prepared to implement a graphics API so I figured colorful ASCii values in a console application
would have to suffice. I wrote the program in C using the free Dev C++ compiler by Bloodshed
Software on Windows. How is something like this done? It’s time for a complete walkthrough
of how I implemented my first Tetris game.

Introduction

 2

As any programmer knows, the general thought process of creating something first involves
understanding the problem, then breaking down the components into an algorithm that will
help you achieve the desired outcome, followed by implementation and testing. In the case of
my Tetris game, I broke down the process as follows:

1. Understand the problem
• Game Objectives: What is the goal of the game?

o Fitting Tetrominoes and clearing lines
o Get the highest score

• Game Rules:
o Tetrominoes fall from the top and can be moved, and rotated
o Horizontal lines become cleared when filled across
o As the score increases, levels increase, making the Tetrominoes drop faster
o The game ends once the pieces stack to the top of the board

2. Break Down the Components

• The Game Board:
o 2D Grid representing the playing field
o Track where pieces are kept and cleared

• Display on Screen:
o Title of the game
o Current level
o Next piece
o Total score

• Tetrominoes:
o 7 different shapes (follows traditional tetromino shapes)
o Defined in a 4x4 grid for rotation in an array

• Player Input:
o Allow movement left, right, down, and rotation

• Game Logic:
o Collision detection for pieces
o Line-clearing mechanism
o Continually update game state
o Handle timing such as rate of drop speed

3. Design an Algorithm

• Board Initialization:
o Initialize a 2D array of size HEIGHT x WIDTH with all zeros.

• Movement & Rotation of Pieces:
o Movement –
o Check if the new position is valid (within bounds and not overlapping)
o If valid, update the piece's position

Formulating a Plan

 3

o Rotation –
o Use matrix transposition and reversing rows/columns for 90° rotation
o Check collision after rotation

• Collision Detection:
o Check for overlapped pieces within board boundaries

-(Pseudo Code)
For each cell in the pieces:
 Calculate the cell’s position on the board.
 If the position is outside the board or overlaps an occupied cell:
 Return collision detected.

• Line Clearing:
-(Pseudo Code)
For each row on the board:
 Check if all cells are occupied.
 If yes:
 Clear the row.
 Shift rows above it down by one.

• Scoring and Level Progression:
o Each cleared line increases the score
o Every N lines cleared advances the level and increases the speed

• Game Over Detection:
 -(Pseudo Code)

 If a piece spawns and immediately collides with the board:
 Trigger the game over state

4. Plan the Program Structure

• Divide the program into modular functions:
o Initialization
o initBoard(): Sets up the game board
o spawnPiece(): Generates a random Tetromino at the top

• Game Logic:
o movePiece(direction): Handles movement
o rotatePiece(): Rotates the piece
o checkCollision(): Ensures valid moves
o updateGame(): Advances the game state (piece falling, line clearing)

• Display:
o drawBoard(): Renders the board.
o drawNextPiece(): Displays the upcoming Tetromino

• User Input:
o handleInput(): Processes player input

 4

5. Iterate and Test
• Test Each Component Individually (IE, collision detection, line clearing)
• Integrate Components Incrementally
• Test Edge Cases:

o Rotate near boundaries
o Clear single or multiple lines at once
o Rapid input causing unexpected behavior

6. Finalize the Program

• Ensure the Game Runs Without Crashing or Freezing
• Add Comments to the Code for Clarity and Good Practice
• Execute and Package the Program

At this stage, the basis of the program structure has been drawn out in front of you for how the
program will need to be approached, built and executed. Now you face the ‘what’ and the
‘why’ behind which programming language you will choose to write the program. I used the C
language for several reasons over other languages:

1) Advantage of simplicity and control
• Low-level access to memory and system resources, making it ideal for smaller

games where fine-tuned control over hardware is crucial
• A non-object-oriented process reduces overhead in memory and execution,

leading to potentially faster performance
2) Procedural Programming

• C has a more structured flow, which is better for small to medium-sized projects
like a Tetris game

• Modular design allows you to break down the game into smaller, separate files
for more sustainable code

3) Performance
• C has minimal runtime overhead. Example: Features like virtual tables (used in

C++ for polymorphism) and complex object management are absent, resulting in
leaner executables

4) Control Over Resources
• C provides explicit control over memory allocation and deallocation using malloc

and free. This avoids the added abstractions of C++ memory management, which
may incur overhead

5) Direct Hardware Access
• C is closer to assembly than C++, making it easier to optimize for specific

hardware, which is often critical for embedded systems

C Programming for Game Development

 5

As mentioned in my introduction, I’m using the free Dev C++ compiler in Windows. I setup a
standard Dev Project as a console application in the C language, and with no prior exposure or
experience with graphics APIs, ASCii values would be a traditional go-to solution for simplicity
and visualization.

Step 1. With Dev C++ installed, it’s simply a matter of setting up a basic project in C and this is
done by opening up the application, and clicking on File > New > Project.

Step 2. Single-click Console Application, Select C Project, type a name in the Name field, and
click Ok.

Setting Up the Project

 6

Step 3. On the next screen you’ll save the dev project to whatever directory you have created,
and select the filename you wish for your project and click Save.

Step 4. In the left window pane you will see a small hierarchy of the dev project that you can
expand displaying the connected main.c file. This can be renamed to Tetris.c or any name you
wish. With the default code provided in the project window to the right, you can simply
highlight and delete from line 4, down if you want. You will still need the stdio and stdlib
header files declared at the top.

With all of these settings in place, it’s time to start writing the code!

Aside from the default libraries at the top, the time library seeds the random number generator

that I’ll be using for my score tracker, the rate in
which the pieces fall, and other time-related
calculations. Conio is short for “console
input/output” which will handle various console-
related operations. The Windows header file will
serve as an interface to the windows API allowing
function declarations with required data types and

macros that allow C programs to interact with the Windows operating system. This file is
important for a variety of other reasons and it is not a part of the standard C library.

Implementing the Code

 7

The #define directive serves as a preprocessor allowing us to make very specific declarations
regarding data types that we use
throughout the programming
process when defining constants.
The BOARD_WIDTH * 2 + 14 is
adjusted to include space for
“Next Piece” and BOARD_HEIGHT

+ 4 allows room for boarders and spacing. Defining BOARD_WIDTH 10 on line 18 defines the
width of the game board in cells, and BOARD_HEIGHT defines the height of the game board in
cells. Beginning on line 20 I define PIECE_SIZE at 4 because each Tetromino piece is made up of
4 smaller square shapes so we have to consider these pieces on a 4x4 grid to account for
movement, rotation and angularity of each piece.

Next, on line 22 I define integer data types which will store data for the variables resulting in
the next piece being used in loop sequences and then pass them into an array for the next one
to spawn. Line 23 will be used to store data for the color of the next piece.

Next, on line 25 I need to declare an integer type to hold all seven of the tetromino pieces in an
array and this method represents them as 4x4 matrices.

As I mentioned earlier, this
4x4 matrix allows the
program to have proper
movement, rotation, and
angularity for each
individual shape. Since each
piece is made up of 4
smaller pieces, we have to
consider how they rotate at
90 degrees in the real game
and ensure that behavior
matches as close as possible
in this version.

 8

Continuing on line 41, I’m creating the remaining shapes to store into the tetrominoes integer
type. Once all of these are properly stored, the function can be closed.

Now, I need to make more variable declarations. Beginning on line 63 I am declaring all seven
colors for each tetromino piece and storing them into an integer named colors. On line 64 I
have to make sure in the beginning that the board is initialized to empty, and the current piece

will be the active tetromino piece
that is currently dropping on the
player board followed by the
color of the current tetromino.
Line 67 will hold the coordinates
of the top-left corner of the
current tetromino. The level will
also need to be set to 1 in the
beginning so this is declared as
the starting point on line 68 and

line 69. This is exactly what you would expect as a data type to hold the lines cleared
throughout each stage, and in the beginning we set it to 0. Line 70 sets the initial drop speed to
800 milliseconds which we know is .8 seconds, and the next line begins the score at 0. The
reason this is measured in milliseconds, is that it allows the game to have a much more precise
way to control the timing between block movements, ensuring consistent and scalable
gameplay as the game progresses. This is also done as the universal standard in programming
as well as game engines.

 9

This is where I write my first void function in this program. Void functions allow the user to
perform actions that don’t require returning a value of true or false (1 or 0). This is usually for
the purpose of ‘side effect’ actions such as printing to the console, modifying global variables,
or updating data structures. In the instance of this program, on line 73 I’m writing a micro
function called clearScreen. Clearing the screen allows the programmer to update what the
user sees without overlapping previous output. In other words, if we do not clear the screen,
new information would merely stack on top of or next to the old content resulting in an
unreadable display.

Line 77 allows us to set the color of the text in the console, and without it, the program would
not be able to make a connection between conditional checks for currentX and currentY
coordinates and would fail to compile.

The function on line 81
spawns a random
Tetromino at the top of
the board as well as
handle the next piece.
The first for-loop on line
82 copies the next piece
into the current piece,
and then we assign the
color of the next piece
to the current piece on
line 87 followed by
generating the next
piece at random
between the seven
pieces. Then, on line 98
the BOARD_WIDTH
operator centers the
piece horizontally.

Next, on line 101 we check if a game-over scenario is triggered in the event the piece collides
immediately. If so, we print out a game-over message to the screen.

 10

This function displays the next piece preview in the top-right corner of the player board area.
Offset allows a push against the BOARD_WIDTH operator and offsetting Y positions a few lines

below the top of the board. This
is one of the cleaner methods of
doing so in C programming.

The for-loop on line 114 allows
us to maintain the horizontal
offset for each row. Otherwise,
without this function we would
experience problems from our
clearScreen function from above.

This if-else statement on line
124 allows us to draw the filled
cell for the next piece and draw
an empty space. We need this in
order to differentiate between
pieces that are drawn, as well as
empty space. This function is
essential for drawing the game
board with the updated display
area and score.

The if-statement on line 154 is a conditional statement that checks if the current piece overlaps
the cell. If we do not check for this, the program would crash every time the piece was
spawned.

 11

Beginning on line 162 this is the continuation of the conditional check from above. I’ve already
been printing off the top and left borders of the player board.

Beginning on line 169 I’m
printing spaces for
alignment, the “Next Piece”
and score area on the other
side of the right border.

Setting color to nextColor
on line 176 is providing the
program the ability to use
the next pieces color,
otherwise without making
that function call we would

simply repeat the same color. If this is false, and the color is passed the if-else condition prints
the bracket for the tetromino piece and then the empty cell for the next piece preview.
Continuing on, the else-if statement on line 182 displays the score row underneath the “Next
Piece” row, and then prints a new line to add a space.

Starting on line 189, this
for-loop iterates through
and prints out the bottom
border of the play area,
prints a new line, and then
resets the color to default.
All of these borders are
more than just a visual
aspect of the program. We

cannot draw the border without knowing the height and the width, and we also can’t write the
logic for collision detection later without checking for the same parameters of BOARD_WIDTH
& HEIGHT.

 12

Now that the score area is displayed, we have to apply functionality and make sure it updates
when the pieces drop. In the regular game, the player receives points every time the pieces hit
even if they do not fit together or clear lines, and this program will be no different. The first
thing to consider is how the score updates based on a few factors:

1) The current level
2) How many lines were cleared
3) What the current drop speed is

If the player removes a single line on level 1 then its 40 extra points. If the player removes two
lines, then a score that is greater than or equal to 100 multiplied by the current level will be
awarded. If three lines are cleared at once, then the player receives a score greater than or
equal to 300 multiplied by the current level. If the player removes all four lines, then this
awards a Tetris which is a score of greater than or equal to 1200 multiplied by the current level.
This is accomplished using a switch statement.

Even with the switch statement in place for updating the score this logic has to be combined
with the understanding of how lines are removed. This next function proved to be one of the
most complicated portions of writing this program, not because of the base function and
removing lines themselves, but trying to customize it so that multiple lines would animate and
disappear in a very specific way to the regular game.

However, there were continual problems with my code getting stuck in the loop of this
removeFullLines function and not properly exiting the loop causing the program to freeze once
the animation was triggered. After several hours of debugging with unsuccessful results, I
ended up accepting that the lines would simply disappear rather than create an animation for
all of them at once. Sometimes a programmer must either accept defeat, or head back to the
drawing board to rework a new algorithm and rewrite everything from scratch.

 13

This version of my removeFullLines function is a fairly straight forward implementation and
ultimately the function that I ended up going with. It will remove multiple lines at once, but not
with any fancy animated behavior. It simply removes the proper lines from the player board.

In another version of my Tetris game, the lines do blink just as they do in the Game Boy version
before disappearing, but only clearing one line at a time, rather than blinking all at once before
shifting them down. To me this was unacceptable, and I decided to go with something less
complicated that would still function properly without crashing the program.

 14

This next function is also very straight forward. Just like the regular version of the game, I want
to award the player with points even when a piece is placed down, so we do this by writing a
function that allows us to give them 5 points even when a piece is placed down each time.

At this stage, I can now implement the logic for my collision detection. In this function, I
declare the data type and give it an obvious name like checkCollision and then pass the
parameters of newX and newY. Since we don’t know yet what those will be during gameplay,
we have to check for a possible collision and assign the values accordingly. At line 270, I’m
checking if the cell is a part of the piece, and then at line 274 I’m checking for the boundaries of
the board. By returning a value of true or 1, then there is a collision with the border.

On line 278 I’m checking for collision with existing blocks on the board, and if we return a value
of true, then the collision is placed by the blocks. Otherwise, by returning zero or false, then
there is no collision.

 15

At this point, I’ve checked for collision with borders and blocks, but I haven’t checked collision
with rotation, nor have we implemented the ability to rotate the pieces 90 degrees. This
function allows the player to rotate the active piece 90 degrees clockwise.

Within the
function, we
have to check if
rotation causes
a collision. This
conditional is
checked on line
295.

There also has to be a way to handle boundary violations after rotation. Remember, we are
considering this behavior on a 4x4 matrix. This can be done by writing some while-loops. On
line 301 we shift right if the piece is out on the left, and on line 302 we shift left if the piece is
out on the right using incremental and decremental looping. During game loop executions,
most games need to continuously update the screen, check for input, and update the current
game state. While-loops ensure the game keeps running until the player exits.

At this point, we have to update the game status by moving the current piece or spawning a
new one. This function checks for an attempt to move the current piece down by one cell, and
move the piece down if no collision is detected. Otherwise, if the piece cannot move further

down, we place the
piece on the game
board, check for and
remove any
completed lines, and
then spawn a new
piece to continue
the game.

 16

At this point, I have a plethora of logical functions written for the game, but at the current state
I have no means of handling the input made by the user. This is where another void function
comes into play. There must be a function for handling movement, and rotation of the current
Tetronimo piece. In game development, the most common keyboard input is W, A, S, D so I will
be following the same trend in my game as well. This function reads keyboard input, checks for
valid moves, and updates the piece position or orientation accordingly. Line 317 checks if a key
has been pressed, and then gets the key value. The switch statement is the most common
method for performing key input.

Line 322 moves the
piece one cell to the
left if there is no
collision, and line
327 allows for
movement to the
right.

Calling the update
function on line 331
will perform a soft
drop by moving the
piece downward
when the ‘S’ key is
hit.

The ‘W’ key will allow us to rotate the active piece clockwise as it descends.

In the event that the user wishes to play the game again, we need to make sure there is a
function in place to handle a game reset. This function will tell the program how to reset the

game state for a new
game, and then clear
the board, reset the
variables, and then
spawn the first piece
for the new game.

 17

Once the player has concluded gameplay, there needs to be a function to handle the game-over
scenario and prompt the player to restart or exit the program.

Beginning on line 359,
the character choice is
placed into a while-loop
and waits for valid
input. If the choice is
‘Y’ for yes, the game
restarts, and the
gameOver function
returns to the game
loop.

If the choice is ‘N’ for no, the game thanks you for playing and exits the program.

To finalize the program, the Main function allows us to initialize everything. Line 376 seeds the
random number generator with the current time, and then line 378 generates the first “next
piece”. After that, I assign a color to the first next piece and then spawn the first piece to start
the game.

Beginning on line 387, I use an
unsigned long as a data type to
represent a non-negative
integer with a larger than
regular unsigned integer. The
unsigned property only stores
positive numbers (0 and
above). This allows me to track
the time for game updates.

The while-loop on line 388
enters the main game loop,
renders the game board to the
console, and processes player
input to move or rotate the
current piece.

 18

The next function on line 392 will update the game state by either moving the piece or
spawning a new one, and then reset the timer for the next update. The Sleep function on line
397 will introduce a small delay to make the loop less CPU-intensive. This is a common practice
in console applications in early development. Return 0 on line 399 will never be reached
because the game is running in an infinite loop.

As a programmer, you obviously test your syntax by compiling the code throughout the
development process, but with this program completely written, it can be compiled as-is.
Simply click the following icon or hit F9 to compile and run the program into an executable file.

That’s it, and this concludes my first Tetris game!

 19

After extensive testing of running the game trying to crash it, I can confirm that this particular
implementation is fully functional and behaves as the user would expect it to. That being said,
while it does work, it is by no means perfect and does not behave to the extent (desired) that I
tried to build it. I still wanted to see more out of it, but regarding the complications of my
removeFullLines function, as long as a program works, and does the thing, then sometimes this
can be enough. As my first implementation of Tetris, from formulating a plan of action to
implementing all of the code, this proved to be a lot and I knew it would be for me. For a
natural born programmer, an application like this can be made in a day or two. For me, it took
weeks of planning, implementation and repeated testing. As I’ve mentioned in my Intro to
Game Logic document, game logic is among the most complicated logic to be implemented into
a program, and if you can master game logic, there is little that you can’t create in this world. I
hope this guide is useful to any and all for educational purposes and at nothing else, provides
insight into what all goes into creating the base-level of a Tetris game. If you have any
questions about this guide or any other general inquiries, you can email me at
technologicguy@gmail.com
Resources Used:

• Cplusplus.com
• Tetris Wiki

Conclusion

